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Prelude: how to look at Brownian motions

Different definitions of Browian motion:
1. Random walks/Lévy’s construction;
2. Gaussian process;
3. Axiomatic characterization;
4. Semi-group and heat equation;
5. …but also random Fourier series.

Given an infinite sequence of i.i.d.
standard Gaussians Nk ,

B(s) = ∑
k≥1

√
2

π

Nk

k
sin(kπs), s ∈ [0,1]

defines a Brownian bridge

E[B(s)B(t)] = s(1 − t).
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Random Gaussian field on the unit circle

Given an infinite sequence of i.i.d.
standard Gaussians Nk ,

B(s) = ∑
k≥1

√
2

π

Nk

k
sin(kπs), s ∈ [0,1]

defines a Brownian bridge

E[B(s)B(t)] = s(1 − t).

Consider T ∶= {e iθ}θ∈[0,2π) ∈ C.
We define the random Fourier series
(with mean zero on T)

Xc(θ) =
∞
∑
n=1

1√
n
(An cos(nθ) +Bn sin(nθ)),

where An,Bn are i.i.d. ∼N (0,1).
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Log-correlated Gaussian field on the unit circle

Consider T ∶= {e iθ}θ∈[0,2π) ∈ C.
We define the random Fourier series
(with mean zero on T)

Xc(θ) =
∞
∑
n=1

1√
n
(An cos(nθ) +Bn sin(nθ)),

where An,Bn are i.i.d. ∼N (0,1).

It defines (e.g. SobolevW −s,2 for s > 0) a
Gaussian field Xc on T with

E[Xc(θ)Xc(θ′)] = − log ∣e iθ − e iθ
′
∣

⎛
⎝
=
∞
∑
n=1

1

n
cos(n(θ − θ′))

⎞
⎠

This is called “log-correlated field on T”.
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Random measure on the unit circle

We define a exponential martingale, formally ∶ eγXc ∶ (the ∶ , ∶ is renormalization).

● If X = B1 sin(θ), we define ∶ eγX ∶ (θ) = eγB1 sin(θ)e−
γ2

2
sin2(θ).

● If X = ∑Nn=1 1√n(An cos(nθ) +Bn sin(nθ)), we define for A ⊂ T,

∶ eγX ∶ (A) = ∫
A

N

∏
n=1
e
γ√
n
An cos(nθ)e−

γ2

2n
cos2(nθ) × e

γ√
n
Bn sin(nθ)e−

γ2

2n
sin2(nθ)dθ.

The above is a positive martingale in N.
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Gaussian multiplicative chaos theory

To recap, starting from the random Fourier series with independent components

Xc(θ) =
∞
∑
n=1

1√
n
(An cos(nθ) +Bn sin(nθ)),

the product of independent renormalized exponentials is a positive martingale.
The theory of Gaussian multiplicative chaos (started with Kahane) defines the
N →∞ limit ∶ eγXc ∶ as a random measure on T denoted µγ when γ ∈ (0,2).
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Perturbation on random Fourier series

We want to study how each Fourier mode affects the law of µc .
We perturbe the Fourier coeffcients (e.g. on B1). We write

Xc = B1 sin(θ) + (A1 cos(θ) +
∞
∑
n=2

1√
n
(An cos(nθ) +Bn sin(nθ))) = B1 sin(θ) + X̃c .

Therefore, if µ̃c =∶ eγX̃c ∶, we have µc = eB1 sin(θ)e−
1
2
sin2(θ) × µ̃c .
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Application to negative moments of signed Gaussian multiplicative measure

Decomposition of the Gaussian field:

Xc = B1 sin(θ) + X̃c .

Decomposition of the randommeasure:

dµc = eB1 sin(θ)e−
1
2
sin2(θ) × dµ̃c .

With F (x) = x−p and p > 0, we consider

E [(∫
T
sin(θ)dµγ(θ))

−p
] .

With ρ parametrizing the random
Fourier coefficient B1, we study

v(ρ) ∶= ∫
T
sin(θ)eρ sin(θ)e−

1
2
sin2(θ)dµ̃γ(θ).

7



Choosing the right functional direction

We want to study

1√
2π
∫
R
e−

ρ2

2 ∣v(ρ)∣−pdρ

where

v(ρ) ∶= ∫
T
sin(θ)eρ sin(θ)e−

1
2
sin2(θ)dµ̃γ(θ).

Key: the perturbation is of constant sign

v(ρ)
dρ
= ∫
T
sin2(θ)eρ sin(θ)e−

1
2
sin2(θ)dµ̃γ(θ)

≥ c inf {µ̃γ [
π

4
,
3π

4
] , µ̃γ [

5π

4
,
7π

4
]} > 0.

with uniform lower bound given by the
independent measure µ̃γ .
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Existence of small moments

We are reduced to

c ∫
R
e−

ρ2

2 ∣v(ρ)∣−pdρ

with v ′(ρ) ≥ m > 0 with some random m
depending on µ̃γ .

Therefore v(ρ) stays near the singularity
for (µ̃γ dependent) time ∼ 1

m
.

Upshot of the story: the negative
moment of the signed random measure

∫
T
sin(θ)dµγ(θ)

is controlled by some negative moment
of a positive random measure

inf {µ̃γ [
π

4
,
3π

4
] , µ̃γ [

5π

4
,
7π

4
]} .
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Application of rank-one Fourier perturbation of Gaussian multiplicative chaos

This is crucial for the following probabilistic harmonic analysis result:

Theorem (H.-Saksman, 2023+)
The random analytic function φ on the unit disk D, defined by
Clark-transforming the random Gaussian multiplicative chaos measure µ
on the unit circle T is almost surely a Blaschke product.
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A glimpse of the proof

The proof combines the following ingredients:

1. Properties of the Clark transform (≃Stieltjes transform in e.g. randommatrix);
2. Basic theory of bounded analytic functions on the unit disk and Hardy

spaces (e.g. Nevanlinna theory and canonical decomposition theorem);
3. A probabilistic version of Frostman’s lemma on conformal perturbations;
4. Convexity inequalities from the theory of Gaussian multiplicative chaos etc.
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Density of zeroes of random analytic functions

We next studied the zeroes of the random analytic function φ.

Theorem (H.-Saksman, 2023+)
Denote by {zk}k≥1 ∈ D the zeroes of the random analytic function φ on the
unit disk D (defined as Clark-transform of µγ ). Then almost surely,

∑
k≥1
(1 − ∣zk ∣)β <∞, (resp. =∞),

if 1 − γ2
8
< β (resp. 1 − γ2

8
> β).

Accordingly, when γ is larger (more randomness), there are less zeros of φ.
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Heuristics on the second result

On a heuristic level, one can guess the threshold 1 − γ2
8
by using

1. Large deviation and level-set estimates of the Gaussian multiplicative chaos
(which level set is responsible for the appearance of zeros of φ);

2. Multifractal analysis of the log-correlated Gaussian field X or the Gaussian
multiplicative chaos measure µγ (≃Hausdorff dimension of the level set);

3. A probabilistic version of the Riesz theorem on Hilbert transform (that it
suffices to study the real part of some random analytic function).
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Heuristics on the threshold

Indeed, the threshold is the Hausdorff dimension of the so-called γ
2
-thick points,

determined by Kahane-Peyrière then Hu-Miller-Peres for the Gaussian free field,
by Rhodes-Vargas then Bertacco for the Gaussian multiplicative chaos.
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Discussions on the second result

The proof (we have several different proofs but this is shortest) includes:

1. A rank-two perturbation strategy X = V1f1(θ)+ V2f2(θ)+ X̃ (which generalizes
the rank-one perturbation method) above;

2. Elementary convex geometry and operator theory to produce the correct
directions to perform perturbation (≃ choosing the basis (f1, f2));

3. Harnack inequality to derive a Hilbert transform estimate à la Riesz theorem;
4. Mapping the density of zeroes to level sets of Gaussian multiplicative chaos

and use Rhodes-Vargas or Bertacco’s result.
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History of the problem

Finally, it should be mentioned that research in this direction was suggested by
Peltoratksi and Hedenmalm to Saksman about a decade ago.
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